lunes, 23 de noviembre de 2015

SEMANA 16

GEOLOGIA APLICADA A LA INGENIERIA

Geología Aplicada a la Ingeniería“ Es la ciencia dedicada a la investigación, estudio y solución de problemas de la ingeniería y ambientales que surgen como resultado de la interacción entre la geología y las obras y actividades del hombre, así como a la predicción y desarrollo de medidas para la prevención o rmediación de peligros geológicos.”

Ing. Civil : El geólogo debe asegurar que los factores geológicos que afectan la ubicación, diseño, construcción, operación y mantención de obras civiles son reconocidos y previstos adecuadamente.  


Ing. Minas : En la industria minera el geólogo geotécnico debe asegurar que el diseño y extracción sea económica y segura.

Campo Ocupacional y Responsabilidades

Excavaciones y Túneles

Estabilidad de las paredes, controlar el agua y sugerir métodos de excavación
Construcción

El comportamiento de los materiales debe asegurar la evolución del proyecto según lo esperado-seguro y económico: proyectos livianos, proyectos pesados (casas, edificios pequeños).



Campo Ocupacional

Obras de Corte y Relleno

Establecer la pendiente de un camino o trazado lineal. Identificar los materiales a lo largo del trazado. 

Utilización y abandono de la obra. Estabilidad de taludes en el largo plazo,etc.

Fundaciones

Asegurar que el medio soporte estructuras, sin asentamientos excesivos, etc



Represas
               

La elección de la ubicación y tipo de muro, estabilidad de laderas, filtraciones, material, estribos, etc.

Materiales de Construcción

Búsqueda y evaluación del material, transporte 



Planificación Urbana y Territorial

Creciente importancia del estudio de peligros geológicos en el diseño urbano, desastres, inundaciones, terremotos, etc.

 



Importancia De La Geología En La Ingeniería Civil
  
En ingeniero civil se enfrenta a una gran variedad de problemas, en los que el conocimiento de la geología es necesario. Indudablemente aprenderá mas geología en el campo y en la practica que la que puede enseñarle en la aulas o en el laboratorio de una escuela. Pero este aprendizaje será más fácil y más rápido y su aplicación más eficaz, si en sus cursos de ingeniería se han incluido los principios básico de la geología. merecen citarse especialmente algunas ventajas especifica las cuales algunas de ellas al desarrollare con más pausa a través del trabajo.

Conocimiento sistematizados de los materiales.

Los problemas de cimentación son esencialmente geológico. Los edificios, puentes, presas, y otras construcciones, se establecen sobre algún material natural.

Las excavaciones se pueden planear y dirigir más inteligente-mente y realizarse con mayor seguridad.

El conocimiento de la existencia de aguas subterráneas, y los elementos de la hidrología subterránea, son excelentes auxiliares en muchas ramas de la ingeniería práctica.

El conocimiento de las aguas superficiales, sus efectos de erosión, su transporte y sus sedimentaciones, es esencial para el control de las corrientes, los trabajos de defensa de márgenes y costas los de conservación de suelos y otras actividades.

La capacidad para leer e interpretar informes geológico, mapas, planos geológicos y topográficos y fotografía, es de gran utilidad para la planeación de muchas obras.

La capacitación para reconocer la naturaleza de los problemas geológicos.

Geología en obras viales

La geología en obra viales juega un papel muy importante pues la mayoría de las carreteras, túneles, y demás obras viales utilizan la geología para realizar estudio de suelo de los terrenos que se utilizaran para dichas obras. Ahora veremos algunos ejemplo donde se aplica la geología.

Perforación de Lumbreras: una de las partes más especializadas en las excavaciones abiertas es la perforación de lumbreras para el acceso de trabajos de túneles. Existe una experiencia abundante que nos ofrece la industria minera; por cierto, la perforación de lumbreras es una operación de construcción compartida por los ingenieros civiles y los de minas, pues muchas de las galerías de las grandes minas son obras de contratistas en ingeniería civil y muchos ingenieros mineros se les consulta acerca del problema con lumbreras en obras civiles.

Cimentación de Puentes: como antecedente necesario deberá recalcarse la gran importancia de la geología en la cimentación de los puentes. Por muy científicamente que esté diseñada una columna de un puente, en definitiva el peso total del puente y las cargas que soporta deberán descansar en el terreno de apoyo. Para el ingeniero estructural las columnas y los estribos de un puente no son realmente “interesantes”. Sin embargo, debe prestarles un interés más que pasajero, ya que muy menudo el diseño de las cimentaciones compete al ingeniero estructural responsable del diseño de la superestructura.

Campos de Aviación: el crecimiento de la aviación civil ha sido extraordinario en los últimos siglos; y es en este por su extensión en donde la geología no es tan determinante como en otros tipos de construcciones. Los campos de aviación modernos tienen que se áreas muy grandes y bastante planas sin serios impedimentos para volar en los alrededores.

Carreteras: son contadas las obras de ingeniería civil que guardan relación tan estrechamente con la geología como las carreteras. Se puede esperar que todo proyecto de carreteras importante encuentre una gran variedad de condiciones geológicas, puesto que se extienden grandes distancias. Aunque será extraño que una carretera requiera actividades constructivas en las profundidades del subsuelo, los cortes que se realizan para lograr las gradientes uniformes que demandan las autopistas modernas proporcionan por necesidad una multitud de oportunidades de observar la geología. No sólo es atractivo para los conductores, sino que también revelan detalles de la geología local que de otro modo serían desconocidos.


domingo, 22 de noviembre de 2015

SEMANA 15

Recurso natural

Un recurso natural es un bien o servicio proporcionado por la naturaleza sin alteraciones por parte del ser humano. Desde el punto de vista de la economía, los recursos naturales son valiosos para las sociedades humanas por contribuir a su bienestar y a su desarrollo de manera directa (materias primas, minerales, alimentos) o indirecta (servicios).
En economía se consideran recursos a todos aquellos medios que contribuyen a la producción y distribución de los bienes y servicios usados por los seres humanos. Los economistas entienden que varios tipos de recursos son escasos frente a la amplitud y diversidad de los deseos humanos, que es como explican las necesidades. Posteriormente, se define a la economía como la ciencia que estudia las leyes que rigen la distribución de esos recursos entre los distintos fines posibles. Bajo esta óptica, los recursos naturales se refieren a los factores de producción proporcionados por la naturaleza sin modificación previa realizada por el hombre; y se diferencian de los recursos culturales y humanos en que no son generados por el hombre (como los bienes transformados, el trabajo o la tecnología). El uso de cualquier recurso natural acarrea dos conceptos a tener en cuenta: la resistencia, que debe vencerse para lograr la explotación, y la interdependencia.

Tipos de recursos naturales

De acuerdo a la disponibilidad en tiempo, tasa de generación (o regeneración) y ritmo de uso o consumo, los recursos naturales se clasifican en renovables y no renovables. Los recursos naturales renovables hacen referencia a recursos bióticos, recursos con ciclos de regeneración por encima de su nivel de extracción. El uso excesivo de los mismos los puede convertir en recursos extintos (bosques, pesquerías, etc), aunque muchos de ellos sean ilimitados (luz solar, mareas, vientos, etc). Los recursos naturales no renovables, por su parte, son generalmente depósitos limitados o con ciclos de regeneración muy por debajo de los ritmos de extracción o explotación (minería, petróleo, etc). En ocasiones es el uso abusivo y sin control lo que los convierte en agotados, como por ejemplo en el caso de la extinción de especies. Otro fenómeno puede ser que el recurso exista, pero que no pueda utilizarse, como sucede con el agua contaminada etc.
El consumo de recursos está asociado a la producción de residuos: cuantos más recursos se consumen más residuos se generan. Se calcula que en España cada ciudadano genera más de 1,38 kg de basura al día, lo que al final del año representa más de 500 kg de residuos


Recursos renovables


Los recursos renovables son aquellos recursos que no se agotan con su utilización, debido a que vuelven a su estado original o se regeneran a una tasa mayor a la tasa con que los recursos disminuyen mediante su utilización y desperdicios. Esto significa que ciertos recursos renovables pueden dejar de serlo si su tasa de utilización es tan alta que evite su renovación, en tal sentido debe realizarse el uso racional e inteligente que permita la sostenibilidad de dichos recursos. Dentro de esta categoría de recursos renovables encontramos el agua y la biomasa (todo ser viviente).
Algunos de los recursos renovables son: Bosques, agua, viento, radiación solar, energía hidráulica, energía geotérmica, madera, y productos de agricultura como cereales, frutales, tubérculos, hortalizas, desechos de actividades agrícolas entre otros.

Recursos no renovables


Los recursos no renovables son recursos naturales que no pueden ser producidos, cultivados, regenerados o reutilizados a una escala tal que pueda sostener su tasa de consumo. Estos recursos frecuentemente existen en cantidades fijas ya que la naturaleza no puede recrearlos en periodos geológicos cortos.
Se denomina reservas a los contingentes de recursos que pueden ser extraídos con provecho. El valor económico (monetario) depende de su escasez y demanda y es el tema que preocupa a la economía. Su utilidad como recursos depende de su aplicabilidad, pero también del costo económico y del costo energético de su localización y explotación.
Algunos de los recursos no renovables son: el carbón, el petróleo, los minerales, los metales, el gas natural y los depósitos de agua subterránea  en el caso de acuíferos confinados sin recarga.
La contabilidad de las reservas produce muchas disputas, con las estimaciones más optimistas por parte de las empresas, y las más pesimistas por parte de los grupos ecologistas y los científicos académicos. Donde la confrontación es más visible es en el campo de las reservas de hidrocarburos. Aquí los primeros tienden a presentar como reservas todos los yacimientos conocidos más los que prevén encontrar. Los segundos ponen el acento en el costo monetario creciente de la exploración y de la extracción, con sólo un nuevo barril hallado por cada cuatro consumidos, y en el costo termodinámico (energético) creciente, que disminuye el valor de uso medio de los nuevos hallazgos.

MINERALES


Se le llama mineral a la sustancia natural, sólida, homogénea e inorgánica de composición química definida (dentro de ciertos límites). Posee una disposición ordenada de átomos de los elementos de que está compuesto, y esto da como resultado el desarrollo de superficies planas, conocidas como caras. Si el mineral ha crecido sin interferencias, pueden generarse formas geométricas características, conocidas como cristales.

Clasificación de los minerales

Los minerales se solían clasificar en la antigüedad con criterios de su aspecto físico; Teofrasto, en el siglo III a. C., creó la primera lista sistemática cualitativa conocida; Plinio el Viejo (siglo I), en su “Historia Natural”, realizó una Sistemática Mineral, trabajo que, en la Edad Media, sirvió de base a Avicena; Linneo (1707-1778) intentó idear una nomenclatura fundándose en los conceptos de género y especie, pero no tuvo éxito y dejó de usarse en el siglo XIX; con el posterior desarrollo de la química, el químico sueco Axel Fredrik Cronstedt (1722-1765) elaboró la primera clasificación de minerales en función de su composición; el geólogo estadounidense James Dwight Dana, en 1837, propuso una clasificación considerando la estructura y composición química. La clasificación más actual se funda en la composición química y la estructura cristalina de los minerales. Las clasificaciones más empleadas son las de Strunz y Kostov.

Importancia y utilidad

Los minerales tienen gran importancia por sus múltiples aplicaciones en los diversos campos de la actividad humana. La industria moderna depende directa o indirectamente de los minerales.

Algunos minerales se utilizan prácticamente tal como se extraen; por ejemplo el azufre, el talco, la sal de mesa, etc. Otros, en cambio, deben ser sometidos a diversos procesos para obtener el producto deseado, como el hierro, cobre, aluminio, estaño, etc.
Los minerales constituyen la fuente de obtención de los diferentes metales, base tecnológica de la sociedad actual. Así, de distintos tipos de cuarzo y silicatos, se produce el vidrio. Los nitratos y fosfatos son utilizados como abono para la agricultura. Ciertos materiales, como el yeso, son utilizados profusamente en la construcción. Los minerales que entran en la categoría de piedras preciosas o semipreciosas, como los diamantes, topacios, rubíes, se destinan a la confección de joyas.

PETRÓLEO


El producto es un compuesto químico complejo en el que coexisten partes sólidas, líquidas y gaseosas. Lo forman, por una parte, unos compuestos denominados hidrocarburos, formados por átomos de carbono e hidrógeno y, por otra, pequeñas proporciones de nitrógeno, azufre, oxígeno y algunos metales. Se presenta de forma natural en depósitos de roca sedimentaria y sólo en lugares en los que hubo mar.

Su color es variable, entre el ámbar y el negro y el significado etimológico de la palabra petróleo es aceite de piedra, por tener la textura de un aceite y encontrarse en yacimientos de roca sedimentaria.


Factores para su formación:

Ausencia de aire
Restos de plantas y animales (sobre todo, plancton marino)
Gran presión de las capas de tierra
Altas temperaturas
Acción de bacterias


Al ser un compuesto líquido, su presencia no se localiza habitualmente en el lugar en el que se generó, sino que ha sufrido previamente un movimiento vertical o lateral, filtrándose a través de rocas porosas, a veces una distancia considerable, hasta encontrar una salida al exterior –en cuyo caso parte se evapora y parte se oxida al contactar con el aire, con lo cual el petróleo en sí desaparece– o hasta encontrar una roca no porosa que le impide la salida. Entonces se habla de un yacimiento.

NOTA: 
El petróleo no forma lagos subterráneos; siempre aparece impregnado en rocas porosas.



Estratigráficos: En forma de cuña alargada que se inserta entre dos estratos.

Anticlinal: En un repliegue del subsuelo, que almacena el petróleo en el arqueamiento del terreno.

Falla: Cuando el terreno se fractura, los estratos que antes coincidían se separan. Si el estrato que contenía petróleo encuentra entonces una roca no porosa, se forma la bolsa o yacimiento.
En las últimas décadas se ha desarrollado enormemente la búsqueda de yacimientos bajo el mar, los cuales, si bien tienen similares características que los terrestres en cuanto a estructura de las bolsas, presentan muchas mayores dificultades a la hora de su localización y, por añadidura, de su explotación.

La importancia del petróleo en la economía mundial

Todo el mundo necesita del petróleo. En una u otra de sus muchas formas lo usamos cada día de nuestra vida. Proporciona fuerza, calor y luz; lubrica la maquinaria y produce alquitrán para asfaltar la superficie de las carreteras; y de él se fabrica una gran variedad de productos químicos.

El petróleo es la fuente de energía más importante de la sociedad actual. Pensar en qué pasaría si se acabara repentinamente, hace llegar a la conclusión de que se trataría de una verdadera catástrofe: los aviones, los automóviles y autobuses, gran parte de los ferrocarriles, los barcos, centrales térmicas, muchas calefacciones... dejarían de funcionar. Además, los países dependientes del petróleo para sus economías entrarían en bancarrota.

El petróleo es un recurso natural no renovable que aporta el mayor porcentaje del total de la energía que se consume en el mundo. La importancia del petróleo no ha dejado de crecer desde sus primeras aplicaciones industriales a mediados del siglo XIX, y ha sido el responsable de conflictos bélicos en algunas partes del mundo (Oriente Medio).La alta dependencia que el mundo tiene del petróleo, la inestabilidad que caracteriza al mercado internacional y las fluctuaciones de los precios de este producto, han llevado a que se investiguen energías alternativas, aunque hasta ahora no se ha logrado una opción que realmente lo sustituya.


EL AGUA


El agua es una sustancia cuya molécula está formada por dos átomos de hidrógeno y uno de oxígeno (H2O). Es esencial para la supervivencia de todas las formas conocidas de vida. El término agua generalmente se refiere a la sustancia en su estado líquido, aunque la misma puede hallarse en su forma sólida llamada hielo, y en su forma gaseosa denominada vapor. El agua cubre el 71 % de la superficie de la corteza terrestre. Se localiza principalmente en los océanos, donde se concentra el 96,5 % del agua total, los glaciares y casquetes polares poseen el 1,74 %, los depósitos subterráneos (acuíferos), los permafrost y los glaciares continentales son el 1,72 % y el restante 0,04 % se reparte en orden decreciente entre lagos, humedad del suelo, atmósfera, embalses, ríos y seres vivos. El agua es un elemento común constituyente y que pertenece al sistema solar, hecho confirmado en descubrimientos recientes. Puede encontrarse, principalmente, en forma de hielo; de hecho, es el material base de los cometas y el vapor que compone sus colas.

Tipos de agua


 El agua se puede presentar en estado sólido, líquido o gaseoso, siendo una de las pocas sustancias que pueden encontrarse en todos ellos de forma natural. El agua adopta formas muy distintas sobre la tierra: como vapor de agua, conformando parte de la atmósfera; como agua marina, eventualmente en forma de icebergs en los océanos; en glaciares y ríos en las montañas, y en los acuíferos subterráneos su forma líquida.

El agua puede disolver muchas sustancias, dándoles diferentes sabores y olores. Como consecuencia de su papel imprescindible para la vida, el ser humano —entre otros muchos animales— ha desarrollado sentidos capaces de evaluar la potabilidad del agua, que evitan el consumo de agua salada o putrefacta. Los humanos también suelen preferir el consumo de agua fría a la que está tibia, puesto que el agua fría es menos propensa a contener microbios. El sabor perceptible en el agua de deshielo y el agua mineral se deriva de los minerales disueltos en ella; de hecho el agua pura es insípida. Para regular el consumo humano, se calcula la pureza del agua en función de la presencia de toxinas, agentes contaminantes y microorganismos. El agua recibe diversos 
nombres, 

según su forma y características:

Según su estado físico:
Hielo (estado sólido)
Agua (estado líquido)
Vapor (estado gaseoso)
Según su posición en el ciclo del agua:
Hidrometeoro
Precipitación

Precipitación según desplazamiento
·        precipitación vertical
·        lluvia
·        lluvia congelada
·        llovizna
·        lluvia helada
·        nieve
·        granizo blando
·        gránulos de nieve
·        perdigones de hielo
·        aguanieve
·        pedrisco
·        cristal de hielo
·        precipitación horizontal (asentada)
·        rocío
·        escarcha
·        congelación atmosférica
·        hielo glaseado
Precipitación según estado
·        precipitación líquida
·        lluvia
·        lluvia helada
·        llovizna
·        llovizna helada
·        rocío
·        precipitación sólida
·        nevasca
·        granizo blando
·        gránulos de nieve
·        perdigones de hielo
·        lluvia helada
·        granizo
·        prismas de hielo
·        escarcha
·        congelación atmosférica
·        hielo glaseado
·        aguanieve
·        precipitación mixta
·        con temperaturas cercanas a los 0 °C
     

Partículas de agua en la atmósfera

Partículas en suspensión
nubes
niebla
bruma
Partículas en ascenso (impulsadas por el viento)
ventisca
nieve revuelta

Según su circunstancia

agua subterránea
agua de deshielo
agua meteórica
agua inherente – la que forma parte de una roca
agua fósil
agua dulce
agua superficial
agua mineral – rica en minerales
Agua salobre ligeramente salada
agua muerta – extraño fenómeno que ocurre cuando una masa de agua dulce o ligeramente salada circula sobre una masa de agua más salada, mezclándose ligeramente. Son peligrosas para la navegación.
agua de mar
salmuera - de elevado contenido en sales, especialmente cloruro de sodio.

Según sus usos

agua entubada
agua embotellada
agua potable – la apropiada para el consumo humano, contiene un valor equilibrado de minerales que no son dañinos para la salud.
agua purificada – corregida en laboratorio o enriquecida con algún agente – Son aguas que han sido tratadas para usos específicos en la ciencia o la ingeniería. Lo habitual son tres tipos:
agua destilada
agua de doble destilación
agua desionizada

Atendiendo a otras propiedades

agua blanda: pobre en minerales
agua dura: de origen subterráneo, contiene un elevado valor mineral
agua de cristalización: es la que se encuentra dentro de las redes cristalinas
hidratos: agua impregnada en otras sustancias químicas
agua pesada: es un agua elaborada con átomos pesados de hidrógeno-deuterio. En estado natural, forma parte del agua normal en una concentración muy reducida. Se ha utilizado para la construcción de dispositivos nucleares, como reactores.
agua de tritio
agua negra
aguas grises
agua disfórica
Según la microbiología
agua potable
agua residual
agua lluvia o agua de superficie
El agua es también protagonista de numerosos ritos religiosos. Se sabe de infinidad de ceremonias ligadas al agua. El cristianismo, por ejemplo, ha atribuido tradicionalmente ciertas características al agua bendita. Existen otros tipos de agua que, después de cierto proceso, adquieren supuestas propiedades, como el agua vitalizada.

ROCAS


Las rocas están sometidas a continuos cambios por las acciones de los agentes geológicos, según un ciclo cerrado, llamado ciclo litológico o ciclo de las rocas, en el cual intervienen incluso los seres vivos.
Las rocas están constituidas, en general, por mezclas heterogéneas de diversos materiales homogéneos y cristalinos, es decir,minerales. Las rocas poliminerálicas están formadas por granos o cristales de varias especies mineralógicas y las rocas monominerálicas están constituidas por granos o cristales de un mismo mineral.
Las rocas suelen ser materiales duros, pero también pueden ser blandas, como ocurre en el caso de las rocas arcillosas o arenosas.
En la composición de una roca pueden diferenciarse dos categorías de minerales:
Minerales esenciales o minerales formadores de rocas.-  Son los minerales que caracterizan la composición de una determinada roca, los más abundantes en ella. Por ejemplo, el granito siempre contiene cuarzofeldespato y mica.
Minerales accesorios.- Son minerales que aparecen en pequeña proporción (menos del 5 % del volumen total de la roca) y que en algunos casos pueden estar ausentes sin que cambien las características de la roca de la que forman parte. Por ejemplo, el granito puede contener zircón y apatito.

Tipos de rocas

Las rocas se pueden clasificar atendiendo a sus propiedades, como la composición química, la textura, la permeabilidad, entre otras. En cualquier caso, el criterio más usado es el origen, es decir, el mecanismo de su formación. De acuerdo con este criterio se clasifican en ígneas (o magmáticas), sedimentarias y metamórficas, aunque puede considerarse aparte una clase de rocas de alteración, que se estudian a veces entre las sedimentarias.
Rocas ígneas
Se forman gracias a la solidificación del magma, una masa mineral fundida que incluye volátiles y gases disueltos.El proceso es lento, cuando ocurre en las profundidades de la corteza, o más rápido, si acaece en la superficie. El resultado en el primer caso son rocas plutónicas o intrusivas, formadas por cristales gruesos y reconocibles, o rocas volcánicas o extrusivas, cuando el magma llega a la superficie, convertido en lava por desgasificación.
Las rocas magmáticas intrusivas son las más abundantes, forman la totalidad del manto y las partes profundas de la corteza. Son las rocas primarias, el punto de partida para la existencia en la corteza de otras rocas.
Dependiendo de la composición del magma de partida, más o menos rico en sílice (SiO2), se clasifican en ultramáficas (ultrabásicas), máficas (básicas), intermedias y félsicas (ácidas), siendo estas últimas las más ricas en sílice. En general son más ácidas las más superficiales.
Las estructuras originales de las rocas ígneas son los plutones, formas masivas originadas a gran profundidad, los diques, constituidos en el subsuelo como rellenos de grietas, y coladas volcánicas, mantos de lava enfriada en la superficie. Un caso especial es el de los depósitos piroclásticos, formados por la caída de bombas volcánicas, cenizas y otros materiales arrojados al aire por erupciones más o menos explosivas. Los conos volcánicos se forman con estos materiales, a veces alternando con coladas de lava solidificada (conos estratificados).

Rocas sedimentarias
Los procesos geológicos que operan en la superficie terrestre originan cambios en el relieve topográfico que son imperceptibles cuando se estudian a escala humana, pero que alcanzan magnitudes considerables cuando se consideran períodos de decenas de miles o millones de años. Así, por ejemplo, el relieve de una montaña desaparecerá inevitablemente como consecuencia de la meteorización y la erosión de las rocas que afloran en superficie. En realidad, la historia de una roca sedimentaria comienza con la alteración y la destrucción de rocas preexistentes, dando lugar a los productos de la meteorización, que pueden depositarse in situ, es decir, en el mismo lugar donde se originan, formando los depósitos residuales, aunque el caso más frecuente es que estos materiales sean transportados por el agua de los ríos, el hielo, el viento o en corrientes oceánicas hacia zonas más o menos alejadas del área de origen. Estos materiales, finalmente, se acumulan en las cuencas sedimentarias formando los sedimentos que, una vez consolidados, originan las rocas sedimentarias.
Se constituyen por diagénesis (compactación y cementación) de los sedimentos, materiales procedentes de la alteración en superficie de otras rocas, que posteriormente son transportados y depositados por el agua, el hielo y el viento, con ayuda de la gravedad o por precipitación desde disoluciones. También se clasifican como sedimentarios los depósitos de materiales organógenos, formados por seres vivos, como los arrecifes de coral, los estratos de carbón o los depósitos de petróleo. Las rocas sedimentarias son las que típicamente presentan fósiles, restos de seres vivos, aunque éstos pueden observarse también en algunas rocas metamórficas de origen sedimentario.
Las rocas sedimentarias se forman en las cuencas de sedimentación, las concavidades del terreno a donde los materiales arrastrados por la erosión son conducidos con ayuda de la gravedad. Las estructuras originales de las rocas sedimentarias se llaman estratos, capas formadas por depósito, que constituyen formaciones a veces de gran potencia (espesor).
Rocas metamórficas
En sentido estricto es metamórfica cualquier roca que se ha producido por la evolución de otra anterior al quedar está sometida a un ambiente energéticamente muy distinto de su formación, mucho más caliente o más frío, o a una presión muy diferente. Cuando esto ocurre la roca tiende a evolucionar hasta alcanzar características que la hagan estable bajo esas nuevas condiciones. Lo más común es el metamorfismo progresivo, el que se da cuando la roca es sometida a calor o presión mayores, aunque sin llegar a fundirse (porque entonces entramos en el terreno del magmatismo); pero también existe un concepto de metamorfismo regresivo, cuando una roca evolucionada a gran profundidad —bajo condiciones de elevada temperatura y presión— pasa a encontrarse en la superficie, o cerca de ella, donde es inestable y evoluciona a poco que algún factor desencadene el proceso.
Las rocas metamórficas abundan en zonas profundas de la corteza, por encima del zócalo magmático. Tienden a distribuirse clasificadas en zonas, distintas por el grado de metamorfismo alcanzado, según la influencia del factor implicado. Por ejemplo, cuando la causa es el calor liberado por una bolsa de magma, las rocas forman una aureola con zonas concéntricas alrededor del plutón  magmático. Muchas rocas metamórficas muestran los efectos de presiones dirigidas, que hacen evolucionar los minerales a otros laminares, y toman un aspecto laminar. Ejemplos de rocas metamórficas, son las pizarras, los mármoles o las cuarcitas.

SUELO



El suelo es considerado como uno de los recursos naturales más importantes, de ahí la necesidad de mantener su productividad, para que a través de él y las prácticas agrícolas adecuadas se establezca un equilibrio entre la producción de alimentos y el acelerado incremento del índice demográfico.
El suelo es esencial para la vida, como lo es el aire y el agua, y cuando es utilizado de manera prudente puede ser considerado como un recurso renovable. Es un elemento de enlace entre los factores bióticos y abióticos y se le considera un hábitat para el desarrollo de las plantas.
Gracias al soporte que constituye el suelo es posible la producción de los recursos naturales, por lo cual es necesario comprender las características físicas y químicas para propiciar la productividad y el equilibrio ambiental (sustentabilidad).


La palabra suelo se deriva del latín solum, que significa suelo, tierra o parcela.
Los suelos se forman por la combinación de cinco factores interactivos: material parental, climatopografía. Organismos vivos y tiempo.
Los suelos constan de cuatro grandes componentes: materia mineral, materia orgánica, agua y aire; la composición volumétrica aproximada es de 45, 5, 25 y 25%, respectivamente.
Los constituyentes minerales (inorgánicos) de los suelos normalmente están compuestos de pequeños fragmentos de roca y minerales de varias clases. Las cuatro clases más importantes de partículas inorgánicas son: grava, arena, limo y arcilla.
La materia orgánica del suelo representa la acumulación de las plantas destruidas y resintetizadas parcialmente y de los residuos animales. La materia orgánica del suelo se divide en dos grandes grupos:

a.   Los tejidos originales y sus equivalentes más o menos descompuestos.

b.   El humus, que es considerado como el producto final de descomposición de la materia orgánica.
Para darse una idea general de la importancia que tiene el agua para el suelo es necesario resaltar los conceptos:

El agua es retenida dentro de los poros con grados variables de intensidad, según la cantidad de agua presente.
Junto con sus sales disueltas el agua del suelo forma la llamada solución del suelo; ésta es esencial para abastecer de nutrimentos a las plantas que en él se desarrollan.
El aire del suelo no es continuo y está localizado en los poros separados por los sólidos. Este aire tiene generalmente una humedad más alta que la de la atmósfera. Cuando es óptima, su humedad relativa está próxima a 100%. El contenido de anhídrido carbónico es por lo general más alto y el del oxígeno más bajo que los hallados en la atmósfera.
La arcilla y el humus son el asiento de la actividad del suelo; estos dos constituyentes existen en el llamado estado coloidal. Las propiedades químicas y físicas de los suelos son controladas, en gran parte, por la arcilla y el humus, las que actúan como centros de actividad a cuyo alrededor ocurren reacciones químicas y cambios nutritivos.
Perfil del suelo.
Un perfil de suelo es la exposición vertical, de horizontes o capas horizontales, de una porción superficial de la corteza terrestre. Los perfiles de los suelos difieren ampliamente de región a región, en general los suelos tienen de tres a cinco horizontes y se clasifican en horizontes orgánicos (designados con la letra O) y horizontes minerales (con las letras A, B, C).

Sistemas de clasificación de suelos.

Los suelos son clasificados de acuerdo con su estructura y composición en órdenes, subórdenes, grandes grupos, subgrupos, familias y series. Se ha visto que las características del suelo varían enormemente de un lugar a otro; los científicos han reconocido estas variaciones en los diferentes lugares y han establecido distintos sistemas de clasificación.
Las diferencias que presentan los suelos se utilizan para clasificarlos en diez órdenes principales, como se observa en el siguiente cuadro.
Los alfisoles (suelos ricos en hierro y aluminio) y molisoles (suelos de pastizales) son los mejores suelos agrícolas.

Tipo de Suelo
Porcentaje de superficie en el mundo
Aridisoles
19.2
Inceptisoles
15.8
Alfisoles
14.7
Entisoles
12.5
Oxisoles
9.2
Molisoles
9
Ultisoles
8.5
Espodosoles
5.4
Vertisoles
2.1
Histosoles
0.8
Suelos diversos
2.8
Total
100





Usos del suelo, idoneidad de la tierra y sostenibilidad del suelo

Según la capacidad del suelo, a éste lo utilizamos para diferentes propósitos.
La idoneidad de la tierra ha sido definida en función de su propiedad para los diversos usos específicos a los cuales va a ser destinada.
La FAO modificó su propia respuesta de evaluación del uso de las tierras (plateada en 1976) y en 1993 mencionó la necesidad de considerar la sostenibilidad como medida real para la planeación en el uso de los suelos dentro del marco del desarrollo sostenible.










Clase
Características
Usos Principales
Usos Secundarios
Medidas de conservación

Tierras adecuadas para el cultivo
I
Tierra excelente, plana y bien drenada
Agricultura
Recreación, vida silvestre, pastura
Ninguna


II
Buena tierra con limitaciones menores, como pendiente ligera, suelo arenoso o drenaje deficiente
Agricultura, pastura
Recreación, vida silvestre, pastura
Cultivo de franjas, labranza en contorno



III
Terreno moderadamente bueno con limitantes importantes en suelo, pendiente o drenaje
Agricultura, pastura, cuenca colectora
Recreación, vida silvestre, industria urbana
Labranza en contorno, cultivo de franjas, vías fluviales, terrazas



IV
Tierra regular, limitaciones severas en suelo, pendiente o drenaje
Pastura limitada, huertos, agricultura limitada, industria urbana
Pastura, vida silvestre
Labranza en contorno, cultivo de franjas, vías fluviales, terrazas



Tierras no apropiadas para el cultivo
V
Rocosa, suelo somero, humedad o pendiente alta imposibilitan la agricultura
Apacentamiento, silvicultura, cuenca colectora
Recreación, vida silvestre
Sin precauciones especiales, si se pastorea o tala de manera apropiada, no debe ararse




VI
Limitaciones moderadas para apacentamiento (ganadería) y silvicultura
Apacentamiento, silvicultura, cuenca colectora, industria urbana
Recreación, vida silvestre
El apacentamiento y la tala deben limitarse a determinadas épocas



VII
Limitaciones severas para apacentamiento (ganadería) y silvicultura
Apacentamiento, silvicultura, cuenca colectora, recreación, paisaje estético, vida silvestre
Si requiere una administración cuidadosa cuando se utiliza para apacentamiento o tala




VIII
Inadecuada para apacentamiento y silvicultura a causa de fuertes pendientes, suelo somero, carencia de agua o demasiada agua
Recreación, paisaje estético, vida silvestre, industria urbana
No se usa para apacentamiento o tala






APROVECHAMIENTO DE LOS RECURSOS NATURALES EN LA INGENIERIA COMO MATERIAL DE CONSTRUCCIÒN

Podemos considerar Materiales de Construcción Sostenibles a aquellos que sean duraderos y que necesiten un escaso mantenimiento, que puedan reutilizarse, reciclarse o recuperarse.
No se puede negar la importancia de losMateriales de Construcción Sostenibles al momento de idear un modelo de construcción sustentable. El 40% de los materiales utilizados en la Unión Europea está destinado a la construcción y mantenimiento de edificios.
Hemos pasado por cambios fundamentales en el desarrollo de la obtención de los materiales, ya que tiempo atrás las poblaciones rurales los conseguían en las proximidades con un bajo impacto sobre el territorio. Luego, con medios de extracción y elaboración más poderosos y eficaces, y medios de transporte más accesibles, la producción de materiales devino en una actividad de alto impacto.
A diferencia del planeamiento, el diseño y la construcción de los edificios, que se circunscribe a un grupo de técnicos, el tema de los materiales está más al alcance de cualquier persona (reformas, mantenimiento, etc.)
Incidencia Ambiental de los Materiales de Construcción
Hay 5 puntos en los que podemos focalizar el impacto que causan los materiales sobre la salud y el medio ambiente:
Consumo de energía
Utilizar materiales de bajo consumo energético en todo su ciclo vital, será uno de los mejores indicadores de sostenibilidad. Los materiales pétreos como la tierra, la grava o la arena, y otros como la madera, presentan el mejor comportamiento energético, y los plásticos y los metales -sobre todo el aluminio- el más negativo.
Los plásticos y los metales consumen mucha energía en el proceso de fabricación; sin embargo, los plásticos son muy aislantes y los metales, muy resistentes.
Consumo de recursos naturales
El consumo a gran escala de ciertos materiales puede llevar a su desaparición. Sería una opción interesante el uso de materiales que provengan de recursos renovables y abundantes, como la madera.
Impacto sobre los ecosistemas
El uso de materiales cuyos recursos no provengan de ecosistemas sensibles, es otro punto a tener en cuenta. Como la bauxita que proviene de las selvas tropicales para fabricar el aluminio o las maderas tropicales sin garantías de su origen.
Emisiones que generan
La capa de ozono se redujo, entre otras razones, por la emisión de los clorofluorocarbonos (CFC)
El PVC, defensor en la causa en la industria del cloro, debido a sus emisiones de furanos y dioxinas, tan contaminantes, van siendo prohibidos en cada vez más usos, como el suministro de agua para consumo humano.
Comportamiento como residuo
Al concluir su vida útil, los materiales pueden causar graves problemas ambientales. El impacto será menor o mayor según su destino (reciclaje, incineración, reutilización directa)
El uso posterior de vigas de madera, antiguas tejas cerámicas o material metálico para chatarra es muy apreciable.
Ciclo de Vida de los Materiales
Extracción: Consideración por la transformación del medio
Producción: Plástico y Metal: Emisiones generales y consumo energético
Transporte: Consumo de energía (más alto cuanto de más lejos provenga el material)
Puesta en obra: Riesgos sobre la salud de la población y generación de residuos
Deconstrucción: Emisiones contaminantes y transformación del medio
MATERIALES MAS USADOS
Maderas
Es uno de los materiales más sostenibles, mientras se satisfagan algunas pautas. En primer lugar, los tratamientos de conservación ante los insectos, los hongos y la humedad pueden ser tóxicos. Actualmente, se comercializan tratamientos compuestos de resinas vegetales. Por otro lado, debemos tener garantías de la sostenibilidad de la gestión del espacio forestal de donde proviene. Para ello se creó una certificación, el sello FSC.
Al concluir su vida útil, la madera puede reciclarse para fabricar tableros aglomerados o para su valorización energética como biomasa.
Se aconseja el uso de maderas locales, ya que una gran porción de la madera semi-manufacturada que se utiliza en nuestro país proviene de Norteamérica, países bálticos y países nórdicos, con alto consumo energético para su traslado.
Pétreos
Muestran un impacto pequeño. El impacto más notorio gravita en la etapa de extracción, por la variación que provoca en el terreno, el cambio de paisaje y de ecosistemas. Por su uso generalizado, este tipo de material es el que ocasiona mayores problemas en el colapso de vertederos.
Generalmente se sugiere el uso de materiales del lugar, ya que debido a su peso, trasladarlos implica un alto consumo energético.El mayor beneficio radica en su larga duración, una de las máximas de los materiales sostenibles.
El hormigón (áridos gruesos y finos y cemento), tiene un impacto bastante grande, pero su alto calor específico lo vuelve muy necesario para utilizar estrategias pasivas de aprovechamiento de la radiación solar (inercia térmica).
El cemento consume mucha energía y puede ser riesgoso para la salud.
Por este motivo, se deben tomar medidas de precaución en la manipulación para prevenir tanto la inhalación de polvo como las quemaduras o irritación que pueden darse al contacto con la piel, teniendo como prioridad el uso de los componentes libres de cromo VII.
Metales
Los principales, son el acero y el aluminio.
Implican un alto consumo de energía y emiten sustancias que perjudican a la atmósfera. Sin embargo, sus prestaciones mecánicas, con menos material, pueden resistir las mismas cargas, y, además, son materiales muy valorizables en obra.
Plásticos
Provenientes del petróleo, se comportan de un modo parecido a los metales, por sus altos consumos de energía y contaminaciones en su elaboración. También, en caso de accidentes de petroleros, generan riesgos sobre el medio ambiente e inestabilidad geopolítica por su control.
Como material de construcción tiene amplias propiedades, como su estabilidad, ligereza y alta resistencia, así también posibilidades de uso como aislamiento.
Algunos materiales tradicionales utilizados para instalaciones como plomo y cobre, se están reemplazando por plásticos como polietilenos y polibutilenos por sus excelentes prestaciones y mejor comportamiento ambiental.
Pinturas
Las hay de muy diversa composición, como disolventes, pigmentos, resinas, la mayoría derivados del petróleo. Han aparecido variedad de productos que reemplazan a los hidrocarburos por componentes naturales, lo que se da en llamar pinturas ecológicas y naturales.
Los problemas surgen cuando los sobrantes son echados en sitios inapropiados con el peligro de emanaciones que contaminan.
Las pinturas plásticas o de base acuosa son las que usan el agua como disolvente.
Aislantes
Los más utilizados en construcción son las espumas en forma de panel o de proyectado. Al ser causantes de la reducción de la capa de ozono, los CFC se reemplazaron por otros productos como el HFC y el HCFC, que a pesar de no afectar la capa de ozono, provocan el calentamiento global.
Hay otras opciones, como la fibra de vidrio o de roca, el vidrio celular, y otras más saludables para el ambiente, ya que provienen de fuentes renovables como la celulosa, el corcho o el cáñamo.